Using Q-Learning and Fuzzy Q-Learning Algorithms for Mobile Robot Navigation in Unknown Environment
نویسندگان
چکیده
One of the standing challenging aspects in mobile robotics is the ability to navigate autonomously. It is a difficult task, which requiring a complete modeling of the environment. This paper presents an intelligent navigation method for an autonomous mobile robot which requires only a scalar signal like a feedback indicating the quality of the applied action. Instead of programming a robot, we will let it only learn its own strategy. The Q-learning algorithm of reinforcement learning is used for the mobile robot navigation by discretizing states and actions spaces. In order to improve the mobile robot performances, an optimization of fuzzy controllers will be discussed for the robot navigation; based on prior knowledge introduced by a fuzzy inference system so that the initial behavior is acceptable. The effectiveness of this optimization method is verified by simulation. Keywordsmobile robot; Q-learning;Fuzzy Q-learning.
منابع مشابه
A Q-learning Based Continuous Tuning of Fuzzy Wall Tracking
A simple easy to implement algorithm is proposed to address wall tracking task of an autonomous robot. The robot should navigate in unknown environments, find the nearest wall, and track it solely based on locally sensed data. The proposed method benefits from coupling fuzzy logic and Q-learning to meet requirements of autonomous navigations. Fuzzy if-then rules provide a reliable decision maki...
متن کاملNavigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملBehavior Based Control and Fuzzy Q-learning for Autonomous Mobile Robot Navigation
This paper presents collaboration of behavior based control and fuzzy Q-learning for mobile robot navigation systems. There are many fuzzy Qlearning algorithms that have been proposed to yield individual behavior like obstacle avoidance, find target and so on. However, for complicated tasks, it is needed to combine all behaviors in one control schema using behavior based control. Based this fac...
متن کاملApplication of Fuzzy Behavior Coordination and Q Learning in Robot Navigation
Behavior based architecture is widely used in mobile robot because it makes the robot response faster. If robot only works to achieve simple task, it can use some primitive behaviors. However, when the task is getting more complex, the behavior coordination is needed. In order to construct this coordinator, fuzzy logic can be applied as Fuzzy Behavior Coordinator (FBC). By using FBC, it can be ...
متن کاملMobile Robot Navigation Using Dynamic Fuzzy Q-learning
Fuzzy logic is a mathematical approach towards the human way of thinking and learning. Based on if-then rules, we can design fuzzy controllers with the intuitive experience of human beings. However, it is not practical for a designer to find necessary number of rules and determine appropriate parameters by hand. Hence, we incorporate a reinforcement learning method with basic fuzzy rules so tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012